Responsible Nanotechnology
(The following is an essay I wrote for the Center for Responsible Nanotechnology's December 2007 newsletter.)
How soon could molecular manufacturing (MM) arrive? It's an important question, and one that the Center for Responsible Nanotechnology takes seriously. In our recently released series of scenarios for the emergence of molecular manufacturing, we talk about MM appearing by late in the next decade; on the CRN main website, we describe MM as being plausible by as early as 2015. If you follow the broader conversation online and in the technical media about molecular manufacturing, however, you might argue that such timelines are quite aggressive, and not at all the consensus.
You'd be right.
CRN doesn't talk about the possible emergence of molecular manufacturing by 2015-2020 because we think that this timeline is necessarily the most realistic forecast. Instead, we use that timeline because the purpose of the Center for Responsible Nanotechnology is not prediction, but preparation.
While arguably not the most likely outcome, the emergence of molecular manufacturing by 2015 is entirely plausible. A variety of public projects underway today could, with the right results to current production dilemmas, conceivably bring about the first working nanofactory within a decade. Covert projects could do so as well, or even sooner, especially if they've been underway for some time.
CRN's leaders do not focus on how soon molecular manufacturing could emerge simply out of an affection for nifty technology, or as an aid to making investment decisions, or to be technology pundits. The CRN timeline has always been in the service of the larger goal of making useful preparations for (and devising effective responses to) the onset of molecular manufacturing, so as to avoid the worst possible outcomes such technology could unleash. We believe that the risks of undesirable results increase if molecular manufacturing emerges as a surprise, with leading nations (or companies, or NGOs) tempted to embrace their first-mover advantage economically, politically, or militarily.
Recognizing that this event could plausibly happen in the next decade -- even if the mainstream conclusion is that it's unlikely before 2025 or 2030 -- elicits what we consider to be an appropriate sense of urgency regarding the need to be prepared. Facing a world of molecular manufacturing without adequate forethought is a far, far worse outcome than developing plans and policies for a slow-to-arrive event.
There's a larger issue at work here, too, particularly in regards to the scenario project. The further out we push the discussion of the likely arrival of molecular manufacturing, the more difficult it becomes to make any kind of useful observations about the political, environmental, economic, social and especially technological context in which MM could occur. It's much more likely that the world of 2020 will have conditions familiar to those of us in 2007 or 2008 than will the world of 2030 or 2040.
Barring what Nassim Nicholas Taleb calls "Black Swans" (radical, transformative surprise developments that are extremely difficult to predict), we can have a reasonable image of the kinds of drivers the people of a decade hence might face. The same simply cannot be said for a world of 20 or 30 years down the road -- there are too many variables and possible surprises. Devising scenarios that operate in the more conservative timeframe would actually reduce their value as planning and preparation tools.
Again, this comes down to wanting to prepare for an outcome known to be almost certain in the long term, and impossible to rule out in the near term.
CRN's Director of Research Communities Jessica Margolin noted in conversation that this is a familiar concept for those of us who live in earthquake country. We know, in the San Francisco region, that the Hayward Fault is near-certain to unleash a major (7+) earthquake sometime this century. Even though the mainstream geophysicists' view is that such a quake may not be likely to hit for another couple of decades, it could happen tomorrow. Because of this, there are public programs to educate people on what to have on hand, and wise residents of the region have stocked up accordingly.
While Bay Area residents go about our lives assuming that the emergency bottled water and the batteries we have stored will expire unused, we know that if that assumption is wrong we'll be extremely relieved to have planned ahead.
The same is true for the work of the Center for Responsible Nanotechnology. It may well be that molecular manufacturing remains 20 or 30 years off and that the preparations we make now will eventually "expire." But if it happens sooner -- if it happens "tomorrow," figuratively speaking -- we'll be very glad we started preparing early.